Chemistry 233 Functional Groups and Alkane Nomenclature

Organic Functional Groups

Hydrocarbons							
Name	Functional Group	Examples					
Alkane (not really a functional group)	R-H	~					
Alkene	R ₂ C=CR ₂						
Alkyne	RC≡CR						
Arene (Aromatic)							
Heteroatom Containing							
Alcohol (hydroxy group)	R-OH	OH					
Ether	R ^O R	(0)					
Amine (amino group)	R-NH ₂ R ₂ NH R ₃ N	NH ₂					
Thiol (mercapto group)	R-SH	(SH)					
Sulfide	R ^S R	S					
Halide	R-X $(X = F, CI, Br, I)$						
Carbonyl (C=O) Containing							
Aldehyde	R H	(O) H)					
Ketone	O R R						
Ester	O R OR	0					
Carboxylic Acid	R OH	ОН					
Amide	O R NH ₂	NH ₂					
Acid Halide	R X	Br					

Straight Chain Alkanes

Name	# of Carbons	Condensed Structure	Skeletal Structure
Methane	1	CH ₄	None
Eth ane	2	CH ₃ CH ₃	
Propane	3	CH ₃ CH ₂ CH ₃	
Butane	4	CH ₃ (CH ₂) ₂ CH ₃	
Pentane	5	CH ₃ (CH ₂) ₃ CH ₃	
Hexane	6	CH ₃ (CH ₂) ₄ CH ₃	
Heptane	7	CH ₃ (CH ₂) ₅ CH ₃	
Oct ane	8	CH ₃ (CH ₂) ₆ CH ₃	
Nonane	9	CH ₃ (CH ₂) ₇ CH ₃	
Decane	10	CH ₃ (CH ₂) ₈ CH ₃	

Some Common Alkyl Substituents

R=parent chain

R-CH ₃	R	R	R
Methyl (-Me)	Ethyl (-Et)	Propyl (-Pr)	Isopropyl (-iPr)
R^	R	R	R
Butyl	sec-Butyl	isobutyl	tert-Butyl

Summary of Rules for Naming Acyclic Alkanes

1. Find the longest continuous carbon chain and name it as the alkane parent.

• If two chains of equal length are found, pick the one with the most branches as the parent.

2. Number the carbon atoms in the chain.

- Number in the direction that gives the first substituent the lowest number.
- If numbering from both directions gives the first substituent the same number, then number so that the second substituent has the lowest possible number.
- If there is a numbering tie in both directions, then you should use alphabetical priority.

3. Number and name substituents.

• Place a number in front of a substituent name followed by a dash (i.e. 2-ethyl). If there is more than one of the same substituent present, designate with a prefix (di-, tri-, tetra-, penta-){i.e. 2,4,6-triethyl}.

4. List substituents in alphabetical order followed by the parent name.

- Prefixes such as di-, tri-, tetra-, penta-, *sec-*, and *tert-* do not count for alphabetization purposes. Iso and cyclo both count for alphabetization purposes.
- Numbers are separated with commas. Numbers and names are separated with dashes.